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Photodetectors with internal gain are of great interest for
imaging applications, since internal gain reduces the effec-
tive noise of readout electronics. High-gain photodetectors
have been demonstrated, but only individually rather than
as a full array in a camera. Consequently, there has been little
investigation of the interaction between camera comple-
mentary metal oxide semiconductor (CMOS) electronics
and the slow response time that high-gain photodetectors
often exhibit. Here we show that this interaction filters shot
noise and causes noise statistics to differ from the com-
mon Poisson distribution. As an example, we investigate a
320 × 256 array of InGaAs/InP high-gain phototransistors
bonded to a CMOS readout chip. We demonstrate the filter-
ing effects and discuss their consequences, including new (to
the best of our knowledge) methods for extracting gain and
increasing dynamic range. ©2020Optical Society of America

https://doi.org/10.1364/OL.389908

There are many applications that require very sensitive imaging
at high frame rates. One example is extreme adaptive optics
for the imaging of exoplanets, which requires operating at
extremely low light levels and frame rates exceeding 1000 frames
per second [1]; many other instances inside and outside of
astronomy are similarly “light-starved.” Imaging requires a
camera array rather than a single-element photodetector, which
in turn requires a readout integrated circuit (ROIC) to capture
and transmit the output of each pixel for digitization. The
electronic noise generated by the ROIC’s operation prevents
shot-noise-limited performance in low-light conditions. An
increasingly attractive solution is to use pixels with internal
gain, which amplify the photo-response above this ROIC read
noise. The limiting noise is then the shot noise in the pixel’s dark
current.

This shot noise usually follows the square root of the number
of carriers. However, Poisson statistics apply only when the
particles’ arrival times are independent. The output of a photo-
detector is uncorrelated only for timescales much longer than its
response time τ . If the integration time T of a camera readout is
significantly longer than τ , consecutive frames are independent.

We refer to this regime as “ROIC limited,” since the ROIC
integration time determines the system bandwidth. However,
in the “detector-limited” regime where T < 2τ , adjacent frames
are correlated, and Poisson statistics do not apply. In effect, the
system noise is filtered by the response time of the photodetector
pixel.

Up until now, operation in the detector-limited regime has
been rare. Benchtop amplifiers and spectrum analyzers oper-
ate on timescales much longer than the τ of single-element
photodetectors. Camera readout integration times can be as
short as microseconds, but until now all camera photodetectors
have responded even faster. However, many new types of pho-
todetectors with high internal gain have much slower response
times than older low-gain designs. When used as camera pixels,
these photodetectors will exhibit filtering effects and violate
Poisson statistics. Thus, understanding the filtering is critical
to properly predicting the sensitivity of cameras made from
shot-noise-limited photodetectors with high internal gain.

This filtering effect is especially important since the internal
gain G itself is commonly characterized using shot noise [2–5],
as it is impossible to measure it directly. Comparing the number
of output electrons to the number of incident photons gives
only the external gain G ex, since not every photon contributes
to the output. The two gains are related by G ex = G ∗QE ∗ FF,
where the quantum efficiency QE determines the fraction of
incident photons that generate carriers, and the fill factor FF is
the fraction of the photodetector area where a generated carrier
will contribute to the output current. There is a large body of
literature on extracting QE and FF, but these approaches assume
discrete components where the signal can be measured at differ-
ent locations within the measurement circuit. They cannot be
applied to integrated arrays. And high-gain photodetectors tend
to have low FF, so a method to directly extract G is even more
important. We show that noise statistics can be used to find G
even for a fully integrated camera array exhibiting noise filtering
effects, though the process requires understanding shot-noise
statistics in the detector-limited regime.

We first present the theory of shot noise in the two noise
regimes and confirm it via measurements. We have developed
and fabricated an array of 320× 256 high-gain InGaAs/InP
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phototransistors, which we have hybridized with a ROIC
(FLIR ISC9705) using a conventional indium bump-bonding
method. We present a robust methodology to extract the inter-
nal gain of pixels on our bonded array by taking advantage of
the filtered shot noise. Finally, we show in both theory and
experiment that in the detector-limited regime, the signal-to-
noise ratio (SNR) at constant illumination is independent of
integration time.

The most general form for expressing the shot noise current
due to a current Iin is

iin =
√

2q IinBW, (1)

where q is charge per charge carrier, and BW is system band-
width. Both current Iin and noise current iin are internal
quantities (currents occurring within the photodetector)
and cannot be measured directly. Only the external quantities
Iex and iex, which are the outputs of the photodetector after the
internal values have been amplified by the internal gain G , are
physically observable. The conversions are given by

Iex = G Iin and iex = G
√

F iin. (2)

The noise conversion includes the excess noise factor F ,
which accounts for fluctuation of the gain mechanism itself [6].
In terms of measurable outputs, then, the external shot noise
current is

iex =
√

2q(FG)IexBW. (3)

In a system consisting of a photodetector and a readout
electronic circuit, BW is limited by either photodetector band-
width or ROIC bandwidth. The photodetector response can
be approximated as a single pole system with a time constant
τ (the time required by the photodetector to respond at the
1/e level). The signal bandwidth of the photodetector is then
1/(2πτ); but here we want the noise bandwidth, which is
1/(4τ) [7]. The ROIC integrates the pixel’s output signal on a
capacitor, which is equivalent to applying a low-pass filter and
results in BWR = 1/(2T) for integration time T [8]. Thus, the
minimum of 1/(4τ) and 1/(2T) determines the total system
noise bandwidth. We designate camera systems as operating in
the ROIC-limited regime when 2τ < T and in the detector-
limited regime when T < 2τ . ROICs integrate on scales from
microseconds to seconds, so camera systems can switch between
regimes.

In the ROIC-limited regime, system bandwidth is
BWR = 1/(2T). Using I = qN/T to describe current in terms
of number of charges N per integration time T, Eqs. (1) and (3)
become

σin,ROIC =
√

Nin and σex,ROIC =
√

FGNex. (4)

The two forms of Eq. (4) are the traditional statement
that shot noise σ follows the square root of particle number,
except corrected for gain. In the detector-limited regime, pixel
speed rather than integration time limits system bandwidth:
BW= 1/(4τ). Eqs. (1) and (3) instead become

σin,det =

√
T
2τ

Nin and σex,det =

√
FG

T
2τ

Nex. (5)

A detector-limited system has T < 2τ by definition, so this
noise is less than the shot noise. The photodetector filters out

high-frequency components, reducing the final output noise
level.

To observe this noise reduction, we operated our camera
such that the pixel shown in Fig. 1 was in the detector-limited
regime (τ = 730 µs at 240 K operating temperature, 4590 Hz
frame rate, T ≤ 202 µs). We took thousands of consecutive
dark frames to observe the noise, repeating this process for
multiple integration times but with all other settings (including
frame rate) held constant. In each case, the dark values formed a
Gaussian distribution, as expected, but they were narrower than
predicted by the usual Poisson statistics and instead more closely
followed Eq. (5). The noise is slightly higher than the filtered
prediction due to the presence of flicker noise as well as ROIC
noise at high frequencies (where the slow response time prevents
the internal gain from effectively suppressing it).

Without knowing the external efficiency, it is difficult to
measure the internal gain of a photodetector directly. Noise
analysis provides an alternative to direct probing for under-
standing the internal amplification mechanism of these
photodetectors and extracting the gain. This process does
not involve incident light so the external efficiency is irrelevant.
Here we investigate a high-gain photodetector’s noise spectrum
as part of a camera system rather than standalone.

The statistical noise spectra of various photodetectors previ-
ously have been studied via direct probing, using an amplifier
and spectrum analyzer [2–5]. Nearly all photodetectors are
in the ROIC-limited regime when measured with benchtop
instruments, so Poisson statistics apply. The white-noise plateau
in the noise frequency spectrum determines iex, and Eq. (4) finds
the gain. However, the spectrum is dominated by 1/f noise at
low frequencies and truncated by the instrument bandwidth at
high frequencies, which can make locating the plateau difficult.

Fig. 1. Dark current electrons versus noise electrons per frame in
one pixel, taken at 4590 Hz. For each integration time, a Gaussian was
fit to a histogram compiled from thousands of consecutive frames to
find the noise (black dots). As an example, the 202 µs measurement’s
histogram and fit (black line) are shown in the inset. In both plot and
histogram, the measured noises are consistently less than the Poisson
predictions of Eq. (4) (blue) and more closely match the detector-
limited predictions of Eq. (5) (green). This is because all integration
times shown lie in the detector-limited regime (the pixel’s response
time is 730 µs at 240 K). Both predictions used G = 1105 (measured
as explained in section 3) and F = 2 (assumed).
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A slow photodetector requires long integration times to
remain in the ROIC-limited regime, but the high gain saturates
instruments, and 1/f noise drowns out the plateau. The other
option is to operate in the detector-limited regime, where Eq. (4)
no longer applies. The relationship between current and noise
becomes frequency dependent due to the pixel’s filtering effect,
so the concept of “white-noise level” is also inapplicable. Noise
is now better described by the shape of its frequency spectrum,
which can depend on the photodetector’s gain mechanism.

We show that the spectrum shape can be used to find the
internal gain of our camera system in the detector-limited
regime. Our devices are phototransistors, which due to their
capacitance require time to charge and discharge. We have
recently proposed a model treating the phototransistor fre-
quency response as a first-order filter with a 3 dB frequency
f0 = 1/(2πτ) for the pixel response time τ [9]. By apply-
ing a low-pass filter to Eq. (3), we find that the external noise
spectrum is given by Ref. [6]:

iex( f )=

√
2q(FG)Iex

1+ ( f /f0)
2 + b. (6)

Here b is the noise floor created by the ROIC readout noise,
an external current. The instrument noise is not visible in
ROIC-limited noise spectra because the photodetector noise
dominates at all frequencies below the instrument bandwidth.
However, in our detector-limited case, it appears as a high-
frequency plateau where the photodetector noise is filtered out
[visible in Fig. 2(b)].

All parameters in Eq. (6) besides G and b are determined
directly. The excess noise factor F is two for phototransistors
[6]. Response frequency f0 is found by illuminating the pixel
with a calibrated spatially uniform square-wave light pulse. The
pulse is synchronized with the camera to last exactly 256 frames,
allowing consecutive pulses to be averaged. This permits the use
of low-intensity pulses to ensure that optical biasing does not
affect pixel speed. Rising and falling exponential functions are fit
to the response to yield τ and thus f0. See Fig. 2a for an example
performed at 220 K (the low temperature slows the response for
better visualization). This procedure also determines external
gain by observing the output change due to a known light input,
but without the fill factor and quantum efficiency, the internal
gain remains unknown.

The camera is then used as a sampling digital spectrum ana-
lyzer by collecting 100,000 consecutive frames at the ROIC’s
highest practical frame rate of 4590 Hz. The data are broken
into 10 segments, a Fourier transform performed on each,
and the results averaged to obtain a clean frequency spectrum.
Equation (6) is then fit with gain G and ROIC noise floor b
as the only free parameters. Figure 2 shows an example using a
nonlinear least-squares fit, yielding a gain of 751 electrons per
absorbed photon.

As an additional advantage to this method, the τ dependence
in Eq. (6) pinpoints the location of the photodetector’s white
noise plateau even if 1/f noise is large. To reduce interference
from 1/f noise, only frequencies above f0 are used in the fit.

We have shown that the filtering effect of a photodetector’s
response time can be exploited to extract its gain. We now
study the impact of this filtering on a camera system’s ability to
detect light. A system’s sensitivity to a given input signal can be
described by its SNR, defined as the number of output signal

Fig. 2. Top: response of the pixel in Fig. 1 to a square-wave pulse
of 200 fW light, spread uniformly across the pixel surface. Frames
taken at 220 K to reduce pixel speed to better show the response, with
4590 Hz frame rate and 202 µs integration. The pulse and frame rates
were synchronized to allow averaging; shown is 50 averaged responses.
The known light level and measured signal yielded an external gain
of 34. Dark current was 63,400 electrons per frame. Bottom: pixel’s
dark current frequency spectrum, under the same conditions as above.
Shown is the average of the Fourier analyses of 10 runs of 10,000
consecutive dark frames each. Equation (6) was fit to the spectrum,
using f0 = 35.1 Hz and dark current Iex = 50 pA as found above. The
fit yielded an internal gain G of 751± 6 (standard deviation).

carriers divided by the number of output noise carriers. Say a
photodetector with internal (pre-amplification) dark current
ID is illuminated to create an internal signal current IS . From
Eqs. (2) and (3), the external signal current is GIS , and the noise
in the external total current is iex =

√
2q(FG2)(IS + ID)BW.

The ROIC adds RN electrons of read noise to each frame on top
of this amplified noise. Adding noise sources in quadrature and
converting current to number of carriers, the SNR of a frame of
integration time T is

SNR=
Nex,signal√
σ 2

ex + RN2
=

Is√
2qF (IS + ID)BW + ( q

T
RN
G )

2
.

(7)
In the case of a system operating in the ROIC-limited regime

where BW= 1/(2T), SNR becomes
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Fig. 3. The pixel in the previous figures was exposed to darkness and
light, approximately 1500 frames each, at various integration times,
and histograms were made of the output. Top: 13 µs. Center: 112 µs.
Bottom: 202 µs. All measurements shared a frame rate of 4590 Hz,
temperature of 240 K, and illumination of 1.1 pW spread uniformly
across the pixel surface. The signal-to-noise ratio was nearly constant,
despite the integration time varying by a factor of 15.

SNRROIC =
Is√

q
T F (IS + ID)+ (

q
T

RN
G )

2
. (8)

This follows the conventional wisdom that a longer
integration time will yield higher SNR. However, in the
detector-limited regime, BW= 1/(4τ) instead and SNR
becomes

SNRdet =
Is√

q
2τ F (IS + ID)+ (

q
T

RN
G )

2
. (9)

Provided the read noise term is negligible compared to the
shot-noise term, as occurs in the presence of high gain, the SNR
in the detector-limited regime is constant regardless of the inte-
gration time used. We have observed this effect in our camera
system, as shown in Fig. 3.

It is tempting to reduce integration time and increase frame
rate to replace each frame with multiple shorter ones. The SNR
of each would remain constant, so averaging multiple frames
should increase sensitivity at no cost. However, this scheme erro-
neously assumes that consecutive frames are independent. In
the detector-limited regime, frames occur within τ of each other
and are thus correlated, so averaging produces no improvement.
Similarly, while integration time can be reduced to small values,
frame rate cannot be arbitrarily increased. The rate at which

the camera system obtains information about a light signal will
always be limited by the pixel response time. However, this
constant-SNR effect can potentially increase the dynamic range
of a detector-limited camera. By decreasing integration time,
the number of signal electrons per frame reaching the ROIC
integration capacitor can be made arbitrarily small without
sacrificing sensitivity as long as the read noise term remains
insignificant.

It is not enough to just make a better photodetector; the way
it interacts with its readout systems must also be understood.
We have shown that camera ROICs can introduce spectral
filtering as a result of their charge integration process and that
this changes the noise statistics of the system. In these cases,
previous methods for calculated shot noise or internal gain will
fail, and the methods we have presented must be used instead.
As technology progresses from single-element photodetectors
to full arrays and from low-gain to high-gain but slower pho-
todetectors, we expect to encounter these situations increasingly
often. This new understanding of Poisson statistics and the
regimes in which they do and do not apply is critical to making
the next generation of high-sensitivity cameras.
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