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Maxwell’s equations generally explain the propagation of 
light through an arbitrary medium by using wave 
mechanics. However, scientific evidence since Newton’s 
time suggest a discrete interpretation of light more 
generally explains its nature. This interpretation lends 
itself well to the discrete form of computer simulation. 
While current simulations attempt to discretize Maxwell’s 
equations, we present an inherently discrete physical 
model of light propagation that naturally forms a causal 
space-time scattering network (STSN). Since STSN has the 
topology of neural networks, inverse design and 
tomography based on STSN can be readily implemented in 
a variety of software and hardware that are optimized for 
deep learning. Also, STSN inherently includes the physics 
of light propagation, and hence the number of unknown 
weights in STSN is at a minimum. We show this property 
leads to orders of magnitude smaller number of unknown 
weights, and a much faster convergence, compared with 
inverse design methods using conventional neural 
networks.  In addition, the intrinsic presence of space-
time fabric in STSN allows time-dependent inverse design 
and tomography. We show examples of the fast 
convergence of STSN in predicting time-dependent index 
profiles while avoiding approximations typically used. 

Light propagating through a vacuum has motivated scientific 
research for over three centuries. This baffling phenomenon was 
explained through the Luminiferous aether theory, or the concept of an 
ever-present but undetectable medium that facilitated light 
propagation in the absence of matter. Aether lacks empirical evidence  
[1] and was abandoned for special relativities simple axiom that the 
speed of light in vacuum is constant.  The particle-based theory of light 
allows for particle-particle interactions, which naturally give way to 
discrete models and relies on a sea of background particles to facilitate 
light propagation. Such a view of light propagation is in harmony with 
modern physics [2] [3] [4]. However, Maxwell’s equations, and the 
continuous wave equation it implies, are the most ubiquitous models of 
light propagation. Unfortunately, the wave equation does not provide an 
inherently discrete physical model, and forces computer simulations to 
approximate discrete forms of Maxwell’s equation [5] [6] [7] [8] [9].  

Here we utilize the non-wave view of light propagation to 
construct an inherently discrete and highly efficient computational 
model to compute light propagation through a medium (including 
vacuum) with arbitrary space and time-dependent optical properties 
(i.e. the forward model), and to predict a possible medium that can 
generate a given optical response (i.e. inverse model).  Due to its 

predictive nature, the model is highly relevant in fields requiring inverse 
design to predict unknown structures and create non-intuitive devices.  

Inverse design has emerged as an exciting methodology for 
creating highly complex and compact photonic and microwave devices 
[10] [11] [12] [13]. The goal of inverse design, broadly speaking, is to 
solve for a suitable material design that approximates a desired 
electromagnetic response. Tomography [14] [15] [16]is similar to 
inverse design in nature, except that a unique solution is sought after.   

The existing tomography and inverse design methods belong 
to three categories: physics-based optimization, physics-based 
optimization using neural networks, and non-physics optimization 
using neural networks. In physics-based optimization [11] [17] [18], the 
input/output characteristics are optimized to match a desired response 
by adjusting the refractive index of space while using Maxwell’s 
equations as a constraint. While highly versatile, the method is not 
efficient for time-dependent problems and optimizes for one frequency 
at a time. In physics-based optimizations a neural network is used to 
implement a physical theory of light propagation. The network’s 
weights are then trained by comparing the network’s forward 
propagating output with the desired output. However, all existing 
methods use limiting approximations such as beam propagation 
approximation [14], Born approximation [15], and the Lippmann-
Schwinger approximation [16].  Therefore, they cannot be used for 
many important conditions, such as high index contrast and a strong 
backscattering. Non-physics optimization using neural networks [13] 
[19] [20] [21] define a topological parameter of interest, train a neural 
network given electromagnetic inputs and outputs to learn the physics 
of the topology for a range of parameter values and optical constants, 
and then invert the network to produce a topology that matches a 
desired input/output characteristic. Once a network is trained it can 
produce a design much faster than the previously mentioned methods. 
However, this approach is extremely inefficient computationally, and 
requires large data sets to train properly. 

Here we present a novel approach we call space-time 
scattering network (STSN) that is based on the general scattering model 
of light propagation, and without any simplification. We show that STSN 
can be efficiently implemented by commonly used software (open 
source TensorFlow), and hardware (CPU/GPU) for forward modeling, 
inverse design, and tomography in broadband and time-dependent 
optical systems that include large index contrasts and strong 
backscattering.  

We start by assuming light scattering at subwavelength 
points within the media, including vacuum. For simplicity, here we 
assume the scattering points are equally spaced on a Cartesian grid. 
Note that neither assumptions are necessary in general. Assuming 
causality holds, we now arrange these scattering events across time, 
producing a “static” space-time fabric. We start by developing STSN in 



one-dimensional space and show how to expand it to higher 
dimensional space mathematically (we limit our graphical 
representation to 1D and 2D space, since the 3D space-time graph is not 
visually representable).  

 

Figure 1: The STSN model. STSN in 1D solves for the refractive index of 
a stack of materials (a) using the final outgoing and initial incoming 
fields. The scattering element of the 1D STSN (b) connects the field 
components of the outgoing and incoming fields at each point in space 
and is connected through the translation operator to form the full 
network (c). Similar, in 2D a grid of refractive index values are solved for 
(d) using a scattering subnet (e) that now takes into account the x and y 
directions. The full network is shown in (f).  

Figure 1a shows the essence of the 1D STSN model: a stack of 
sub-wavelength thick material slabs extending infinitely in the direction 
perpendicular to propagation and with their own unique refractive 
index values to be solved using incoming and outgoing fields. The 
scattering of light is represented mathematically by a tensor field 𝑺(𝒙) 
at a location given by the position vector 𝒙. It couples the incoming and 
outgoing fields which are compactly written as tensor fields 𝑬𝑖,𝑡(𝒙) and 
𝑬𝑜,𝑡(𝒙) and have field components forward incoming/outgoing 

𝐸𝑓
𝑖/𝑜,𝑡

(𝒙), backward incoming/outgoing 𝐸𝑏
𝑖/𝑜,𝑡

(𝒙) and node (local) 

incoming/outgoing 𝐸𝑛
𝑖/𝑜,𝑡

(𝒙) (Figure 1b). The forward and backward 
directions are with respect to the positive 𝑋 direction in Figure 1a. The 
tensor field 𝑺(𝒙) at a given location is represented as a subnet and will 
become the fundamental building block of the STSN. The connections of 
scattering subnets are dictated by a translation operator T and is shown 
visually in Figure 1c.  

The 2D STSN follows from the 1D STSN. Now a gird of 
unknown refractive index materials is solved (Figure 1d) and the 
scattering subnet (Figure 1e) couples the 𝑋 and 𝑌 field components. The 
network itself is 3D (Figure 1f) due to the two dimensions needed for 
space and one dimension needed for time. As in the 1D case, a 
translation operator defines the connections between scattering 
subnets.  

Mathematically, the STSN can be described using the well 
understood transmission line matrix theory (TLM) developed by Peter 
Johns [5]. The STSN model can be expressed in a compact form for one, 
two and higher dimensions. The scattering subnet is represented as a 
tensor field coupling the incoming and outgoing tensor fields:  
𝑬𝑜,𝑡(𝒙) = 𝑺(𝒙)𝑬𝑖,𝑡(𝒙). The connection to the next time step can be 

defined via a translation operator T, such that: 𝑬𝑖,𝑡+Δ𝑡(𝒙) =
𝑇(𝑬𝑜,𝑡(𝒙)). Note that tensor field 𝑺 is only related to the optical 
properties of the material, while operation 𝑇 is simply producing 
interconnection between geometrically adjacent scattering points in 
space (details of S and T are presented in the Supplementary Material).   

To evaluate the accuracy of STSN model, we compare 
simulation results of 1D and 2D examples with results produced by 
finite difference time domain (FDTD Solutions, Lumerical Inc.). Identical 
structures were simulated in both STSN and Lumerical and the resulting 
fields show good agreement (Figure 2). The overlap integral value 
between the Lumerical and STSN electric fields across all simulated 
space are 98.74% and 95.41% for the 1D and 2D cases respectively.   

 

Figure 2: STSN validated by Lumerical software package. (a) shows the 
refractive index distribution for the 2D test case.  (b) and (c) show the 
2D test case for Lumerical and STSN. (d) shows the refractive index 
distribution for the 1D test case. (e) and (f) show the 1D test case for 
Lumerical.  

STSN naturally forms a network that has a forward flow in 
the direction of the “arrow of time,” and can be readily implemented by 
any software/hardware designed for neural networks (NN) and deep 
learning. Note that the number of unknown weights in the resulting 
neural network is exactly equal to the number of unknown optical 
parameters in the system (i.e. number of parameters in the design 
space), which is the minimum possible number of unknown weights. 
This is in stark contrast with the non-physics based neural networks, 
where the number of unknown weights is typically much larger than the 
number of parameters in the design space, since many of the weights 
are used by the network to “learn” the physics involved. 

The STSN is implemented as a NN in Google’s open source 
TensorFlow where the graph’s layers are defined by scattering subnet 
𝑺(𝒙) and translation operator T. The scattering tensor field at one point 
in space 𝑺(𝒙 = (𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘)) produces a two-layer subnet (Figure 1-b 

and e). This subnet represents the optical properties of one point in 
space and its weights are directly related to the refractive index (See 
Supplementary Material).  The subnets are linked through 𝑇, which 
pushes the network through time (Figure 1-c and f). Note that the 
subnets weights may differ across time as the refractive index changes 
with time. The weights are initialized to free space. An area of interest in 
the graph is defined across space where the refractive index is unknown 
and trainable. All weights outside the region are left constant.  

To evaluate the tomography and inverse design capabilities 
of STSN, both static and time-dependent refractive index distributions 
are trained, using the optical response of the media to incident pulses of 
light (Figure 3a-d and f-i). The percent error average and standard 
deviation between the trained and ground truth refractive index 
distributions is calculated to quantify the prediction error (i.e. a figure of 
merit for tomography) and are shown in Table 1.  Note that for time-
dependent refractive indices the model cannot reconstruct their values 
for the final five time steps and when they are excluded, an average 
percent error below 1% is achieved for all examples. The error between 



 

 

Figure 3: Results for time-dependent and time-independent refractive 
index distributions. Time-dependent results for (a) 3 scatterers and 1 
time change (b) 3 scatterers and 2 time changes and (c) 3 scatterers and 
3 time changes. In all three cases, there are 180 unknowns and the 
ground truth distribution is shown above the trained distribution. Time 
independent results are shown for (f) 2 scatterers (g) 5 scatterers and 
(h) 9 scatterers. In all three cases there are 11 unknowns and the 
percent error between trained and ground truth for each position is 
shown in red. The region of trainable refractive index values range from 
60 to 62 for the time dependent case and 100 to 110 for the static case. 
The least squares (L.S.) between the ground truth and trained refractive 
index values are shown. The least squares error between ground truth 
and trained output fields for time-dependent (d) and time-independent 
(i) are shown along with the overlap integral over all time at the point 
directly after the material for time-dependent (e) and time-independent 
(j) results.  

the desired and achieved optical response was also 
quantified as the sum of the difference in space-time (overlap integral) 
between the desired and achieved responses at  the point in space 
directly after the material, to quantify the inverse design error (Figure 
3e,j).  The training set is a single field over all space at the final time step.  
For the static case, only one training field is needed. For the time-
dependent case, the field’s initial position is swept to produce a 
staggered set of fields at the final time step. The training sets are 
produced by running the STSN forward in time with the desired weight 
distribution. 

 
 

Figure 3 Unknowns Time Changes 
Average of 

Percent Error 
Standard Deviation 

of Percent Error 

a 180 1 3.73% 18.27% 
b 180 2 0.92% 6.85% 
c 180 3 2.23% 14.74% 
f 11 0 0.00064% 0.0013% 
g 11 0 0.0011% 0.0013% 
h 11 0 0.0014% 0.0010% 
a* 180 1 0.64% 7.76% 
b* 180 2 0.0084% 0.048% 
c* 180 3 0.0023% 0.0089% 

Table 1: The percent error average and standard deviation 
between the ground truth and trained refractive index distributions 

shown in figure 3. *Excluding the 5 final time steps. 

An inversely designed notch filter example was taken from 
one of the best reported non-physics based optimizations using neural 
networks [21] to demonstrate the performance of STSN (Figure 4). Our 
model accurately produces the notch filter while using four orders of 
magnitude less weights and one training set (see Table 2).  

Model Layers Weights Training Sets Saturation Epoch 
STSN 200 60 1 100 

Ref. [21] 6 >300,000 550,000 2000 

Table 2: Comparison of STSN’s and NPNN’s computing 
resources needed to inversely design a notch filer. 

To ensure an accurate comparison, the STSN model was 
constrained to 3ums with 50nm resolution which is comparable to the 
1.1ums and 8nm resolution used in [21]. An identical transmittance 
spectrum was used with fewer frequency points (20) and the structure 
was set to represent vacuum initially. 

We attribute the many orders of magnitude lower 
computational cost of STSN in this inverse design example to its physics-
based topology.  The single training set suggests a causal network is 
achieved while the smaller weight count exhibits the efficiency of the 
STSN design. A physics-based approach does not waste resources on 
learning the physics of light propagation. For tomography applications, 
STSN is shown to accurately recreate features densely packed in both 
time and space even with high refractive index profiles. While previous 
tomography models must resort to approximations with small 
backscattering, STSN appears capable of handing optically complex 
structures that are also time-dependent. 

 

Figure 4: A notch filter designed using STSN. (a) The cost function 
between the transmitted and expected spectrums. (b) and (d) show the 
resulting reflectance and transmittance of the filter while (c) shows the 
resulting dielectric structure with 50nm resolution. 



This paper introduces space-time scattering network STSN 
for inverse design and tomography. STSN can be used for inverse design 
and tomography of structures that are time-dependent and anisotropic. 
The network is implement in an open-source software (Tensorflow), 
and can take advantage of the state-of-the-art hardware, such as GPUs. 
We show that STSN can reproduce several refractive index structures 
that were both static and time-dependent. STSN also was compared 
with one of the best reported inverse design methods based on neural 
network. STSN achieves the inverse design with orders of magnitude 
fewer weights and a much faster convergence rate.  While our examples 
are based on 1D structures, STSN is easily translated into higher 
dimensions, as shown in the Supplementary Material. In addition, we 
showed that optical polarization and anisotropy of the material can also 
be included in 3D STSN seamlessly.  
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Supplementary Materials 

𝑬𝒐,𝒕 and 𝑬𝒊,𝒕 Tensors: 𝐸𝑜,𝑡(𝑥) and 𝐸𝑖,𝑡(𝑥) are tensor fields of rank 1 
with position vector 𝑥 at time 𝑡. For 1D and 2D, the tensor contains the 
field components at each point in space and time. The field components 
are forward 𝐸𝑓

  and backward 𝐸𝑏
  for each Cartesian direction (x and y) 

as well as internal node components 𝐸𝑛
 . 

 

Eo/i,t(x) = [Efx
o/i,t(x), Efy

o/i,t(x), Ebx
o/i,t(x), Eby

o/i,t(x), En
o/i,t(x)] 

 
In the third dimension, the internal field is dropped, and 

polarization is introduced. Therefore, there are now four field 
components for each direction; two for direction and two for 
polarization. 
The 𝑺 Tensor and T Operation: 𝑆(𝑥) is a tensor field of rank 2 that 
transforms the input and output fields at each point in space through a 
scattering matrix. 
 

Eo,t(x) = S(x)Ei,t(x) 
 

For 1D, 𝑆(𝑥) is equal to [5] 
 

S(x = x) =
1

2 + W(x)
[

2 −W(x) 2W(x)

−W(x) 2 2W(x)
2 2 W(x) − 2

] 

 
Where 𝑊(𝑥) is a scalar field and represents the weight 

values in space. This weight is trained by the neural network and is 
related to the physical dielectric constant through the following 
equation [5] 

𝜖𝑟(𝑥) = 1 +
𝑊(𝑥)

2
 

 
For 2D, 𝑆(𝑥) is shown in (S1) [5], where 𝑊(𝑥, 𝑦) is a scalar 

field and represents the weight values in space. This weight is related to 
the physical dielectric constant through the following equation [5] 

 

ϵr(x, y) = 2 +
W(x, y)

2
 

Three dimensions can be easily constructed using the 
transmission line matrix (TLM) method’s symmetrical super-
condensed node [22]. The node introduces polarizations and eliminates 
the need for internal node fields. More recent work has focused on 
dispersive mediums and could be implemented in STSN method [3]. 
The scatter tensor field is Error! Reference source not found.. 
Subscripts have been used in place of standard functional notation for 
readability and are defined as,  

 
aij = 1 − bij − dij 

cij = dij − bij 

𝑏𝑖𝑗 = �̂�𝑘𝑗 

𝑑𝑖𝑗 = �̂�𝑖𝑘 

 
Where �̂� is a scalar field and is related to the dielectric constant with 
polarization direction 𝑗 by 

 

�̂�𝑖𝑘�̂�𝑖𝑗 = (
𝛥𝑡

𝛥𝑖
)
2 𝑐2

𝜀𝑗
 

 
Where 𝛥𝑡 is the time step, 𝛥𝑖 the spatial step in direction 𝑖, 𝜀𝑗  

the relative dielectric constant in polarization direction 𝑗, and 𝑐 is the 
speed of light in vacuum. Note that anisotropic materials are allowed in 
both permeability and permittivity. However, here we assume 
anisotropic permittivity only due to the simplicity of its relationship to 
the scattering matrix’s weights. 

The Translation operator is defined as follows 
 

Ej
i,t+Δt(x + Δx) = Ej

o,t(x + Δx) = TjEj
o,t(x) 

 
Where 𝑗 is the element of the rank 1 tensor field 𝐸 making 𝑇𝑗 a 

two tensor or matrix. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

 
 
 

S(x = [x, y]) =
1

4 + W(x, y)

[
 
 
 
 

2 2 −W(x, y) − 2 2 2W(x, y)

2 2 2 −W(x, y) − 2 2W(x, y)

−W(x, y) − 2 2 2 2 2W(x, y)

2 −W(x, y) − 2 2 2 2W(x, y)
2 2 2 2 W(x, y) − 4]

 
 
 
 

 
 (S1) 

𝑆(𝑥 = [𝑥, 𝑦, 𝑧]) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑎𝑥𝑦 𝑏𝑥𝑦 𝑑𝑥𝑦 − − − − − 𝑏𝑥𝑦 − −𝑑𝑥𝑦 𝑐𝑥𝑦

𝑏𝑥𝑧 𝑎𝑥𝑧 − − − 𝑑𝑥𝑧 − − 𝑐𝑥𝑧 −𝑑𝑥𝑧 − 𝑏𝑥𝑧

𝑑𝑦𝑥 − 𝑎𝑦𝑥 𝑏𝑦𝑥 − − − 𝑏𝑦𝑥 − − 𝑐𝑦𝑥 −𝑑𝑦𝑥

− − 𝑏𝑦𝑧 𝑎𝑦𝑧 𝑑𝑦𝑧 − −𝑑𝑦𝑧 𝑐𝑦𝑧 − − 𝑏𝑦𝑧 −

− − − 𝑑𝑧𝑦 𝑎𝑧𝑦 𝑏𝑧𝑦 𝑐𝑧𝑦 −𝑑𝑧𝑦 − 𝑏𝑧𝑦 − −

− 𝑑𝑧𝑥 − − 𝑏𝑧𝑥 𝑎𝑧𝑥 𝑏𝑧𝑥 − −𝑑𝑧𝑥 𝑐𝑧𝑥 − −
− − − −𝑑𝑧𝑦 𝑐𝑧𝑦 𝑏𝑧𝑦 𝑎𝑧𝑦 𝑑𝑧𝑦 − 𝑏𝑧𝑦 − −

− − 𝑏𝑦𝑧 𝑐𝑦𝑧 −𝑑𝑦𝑧 − 𝑑𝑦𝑧 𝑎𝑦𝑧 − − 𝑏𝑦𝑧 −

𝑏𝑥𝑧 𝑐𝑥𝑧 − − − −𝑑𝑥𝑧 − − 𝑎𝑥𝑧 𝑑𝑥𝑧 − 𝑏𝑥𝑧

− −𝑑𝑧𝑥 − − 𝑏𝑧𝑥 𝑐𝑧𝑥 𝑏𝑧𝑥 − 𝑑𝑧𝑥 𝑎𝑧𝑥 − −
−𝑑𝑦𝑥 − 𝑐𝑦𝑥 𝑏𝑦𝑥 − − − 𝑏𝑦𝑥 − − 𝑎𝑦𝑥 𝑑𝑦𝑥

𝑐𝑥𝑦 𝑏𝑥𝑦 −𝑑𝑥𝑦 − − − − − 𝑏𝑥𝑦 − 𝑑𝑥𝑦 𝑎𝑥𝑦 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(S2) 
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