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We introduce optomechanical nanoantennae, which show dramatic changes in scattering properties by minuscule
changes in geometry. These structures are very compact, with a volume 500 times smaller than free-space optical
wavelength volume. This deep subwavelength geometry leads to high speed and low switching power. The band-
width of the device is about 4.4 GHz, with a switching energy of only 35 pJ. Such antenna structures could lead to
compact and high-speed all-optical nanoswitches. © 2012 Optical Society of America
OCIS codes: 230.4110, 250.5403, 250.6715, 130.4815, 230.0230, 250.5300.

The principle of surface plasmon polariton (SPP) has
been exploited by many research groups to achieve high
speed and compact nanoswitches, for example, tuning
the SPP wavelength by controlling the refractive index
of the substrate of a nanoantenna [1]. Recent develop-
ment of plasmonic nanoswitches includes gap-loading
approaches, where the gap region of the coupled nanoan-
tenna is loaded with photoconductive [2], nonlinear [3],
or anisotropic material [4]. Thus, the scattering response
of a nanoantenna can be changed strongly by controlling
the dielectric property of the material in the antenna
gap [5–7].
An optomechanical nanoantenna could be defined as a

type of optical antenna that is mechanically reconfigured
by the near-field optical force. Thus, the scattering prop-
erties of the antenna can be dynamically controlled with-
out requiring any material in the antenna gap. The force
density that is localized to a subwavelength area is very
large [8], as we have also recently verified experimentally
[9]. Here, we present an example of an optomechanical
nanoantenna that utilizes these features to achieve un-
precedented performance. The device is composed of
a plasmonic bowtie antenna with suspended curved
beams attached to the end of each arm, as shown in
Fig. 1(a). The antenna structure is considered to be made
of aluminum, where the length of the antenna is 170 nm
with 40 nm thickness. Since selective anisotropic etching
of the substrate could release narrow components due to
undercut, a 25 nm depth of etch of the substrate and
25 nm undercut of the antenna were assumed in the si-
mulation. The suspended beams act as movable compo-
nents of the antenna setup. These create an open oval
ring with small air gap regions at the top and bottom
of the ring. The minor (along x direction) and major
(along y direction) diameters of the elliptical opening
were kept fixed at 100 nm and 440 nm, respectively, with
a beam width of 40 nm. A 2 nm naturally formed alumi-
num oxide over all aluminum surfaces was assumed in
our simulation. The bowtie antenna provides efficient
coupling between the free-space optical source with po-
larization along the antenna long axis, and it generates a
strong optical near field in the gap regions of the antenna.
The near-field intensity profile at 25 nm above the anten-
na surface is also presented in Fig. 1(a). The gradient of
the confined optical field results in strong optical force

between the ends of the curved beams and bends them
toward each other [10].

Finite-difference time-domain (FDTD) simulation is
used to simulate the antenna structure. Maxwell’s stress
tensor formulism is applied to calculate generated optical
force [9] between the two beams. The optical force along
the x axis is attractive and dominant, compared with the
other components, as shown in Fig. 1(b). All forces are
normalized with respect to a source intensity of
1 mW ∕ μm2. The Casimir force between two beams [inset
in Fig. 1(b)] is also calculated based on the transfer ma-
trix approach for a multilayer system described in [11].

The power transmission and reflection spectrums for
the structure are shown in Figs. 1(c) and 1(d) with a red-
shift due to decreasing gap width. The reflected power
(R) is calculated on a 2π hemisphere at the back of
the optical source. The transmitted power (T) is derived
by calculating the power lost (L) in the device and using
the power conservation law T � 1 − R − L. The nanoan-
tenna can be considered as a lump element as shown in
Fig. 1(e), with impedance Za � Ra � iωLa in parallel

Fig. 1. (Color online) (a) Schematic diagram of the designed
optomechanical nanoantenna. The near-field intensity profile of
the antenna is shown on top of the 3D view. (b) Simulated op-
tical force on suspended beam as a function of gap; inset, Ca-
simir force as a function of gap. (c) Simulated power
transmission and (d) reflection spectrums versus gap width.
(e) Nanocircuit lump element model.
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with an equivalent capacitor. The equivalent capacitor is
composed of the gap capacitor between the suspended
beams Zg � −i ∕ωCg in parallel with the fringe capacitor
Cf . The optical resonance frequency of the antenna can
be determined by setting the reactive part of the input
impedance to be zero, yielding ω � 1 ∕

���������������������������
La�Cg � Cf �

p
.

The redshift trend in both plots is fitted well by white
dashed curves using the resonant frequency formula of
the nanocircuit model [Fig. 1(e)]. Such a strong change
in antenna scattering due to deep subwavelength gap var-
iation has been experimentally verified [12].
The mechanical behavior of the antenna is analyzed

based on the Euler–Bernoulli beam deflection method
[13]. For a single-sided clamped beam (cantilever) with
a point force (F) exerted at the free end, the beam de-
flection can be calculated by Δδ � F ∕ κ, where κ �
Etw3 ∕ 4L3 is the spring constant of the beam with length
L and widthw. E is Young’s modulus, which is 69 GPa for
aluminum, tw3 is proportional to the second momentum
of area for a beam with rectangular cross section. In ad-
dition, the mechanical resonant frequency of a single-
sided and double-sided clamped beam can be calculated
by f res � A

������������������
Et2 ∕ ρL4

p
, where A is the clamping coeffi-

cient and ρ is beam density. Thus, the mechanical reso-
nance frequency is inversely proportional to the
structure’s linear dimension. The size of the optical de-
vice could be reduced to subwavelength dimensions
by SPP, and as a result, high mechanical frequency is
achievable. The proposed device has a mechanical band-
width of about 4.4 GHz, which is 2 orders of magnitude
higher than the natural frequency in conventional opto-
mechanical devices [14,15].
In order to investigate the switching characteristics of

the device, Eq. (1) has been solved self-consistently:

δ � δ0 − 2κ−1�FOptical�δ� � FCasimir�δ�� (1)

where δ0 � 10 nm is the gap width at zero source illumi-
nation. Since the calculated optical force is normalized to
source intensity, the gap width solution can be expressed
in terms of optical source intensity. Figure 2(a) shows the
gap width solutions as a function of optical source inten-
sity and optical wavelength. The minimum switch power
is found at an optical wavelength of 1.78 μm. The map
of the solution (gap width versus source intensity) for
this wavelength is shown in Fig. 2(b). The graph consists
of the stable (green line) and unstable (black line)
branches. The origin of the unstable/stable condition is
the relative magnitude of the mechanical force, which
has the opposite direction compared with the optical
and Casimir forces. The stable branch results from nega-
tive feedback: any infinitesimal change in gap width will
change the forces’ magnitude to oppose the gap change.
In contrast, the unstable branch results from positive
feedback. By increasing the source intensity [forward
switching—red path in Fig. 2(b)], the width of the gap
decreases monotonically, until a critical gap width where
the two stable and unstable branches meet each other. At
the critical point, any increase in source intensity results
in a positive feedback since reduced gap width leads to
an increased optical force. Thus, the feedback generates
a sudden decrease in gap width from the critical point. As

the gap approaches a subnanometer width, the electric
field intensity and optical force decrease. This phenom-
enon has been investigated earlier [16], and is due to
quantum mechanical effects. Thus, the positive feedback
mechanism mentioned above gradually decreases in the
subnanometer region, resulting in another stable point.
This region is shown by a grayed area in Fig. 2(b). For
the backward switching (dashed blue path), the gap re-
mains within the grayed area (subnanometer) until the
backward path crosses the unstable route where the gate
intensity results in an optical force, which in summation
with Casimir force cannot withstand the mechanical
force required for beam deflection. Thus, there is a sud-
den jump to the larger gap width in the stable branch
where the optical force can keep the beams bent. Further
reduction of optical power will decrease the force and
the gap width increases. Although the optical source in-
tensity generates a strong force at bistable points where
the optical force is 2 orders of magnitude larger than the
Casimir force, the role of the Casimir force becomes sub-
stantial for small gate source powers where it is compar-
able with the optical force.

The depth of modulation (DM) of power reflection R
and transmission T spectrums are defined by the follow-
ing expressions:

DMR � 10 log
Rδ�10 nm

Rδ�1 nm
; (2a)

DMT � 10 log
Tδ�10 nm

Tδ�1 nm
; (2b)

The optical signal wavelength at 2.04 μm has the largest
DMR (∼5 dB). The criteria for choosing the signal wave-
length could also be based on DMT if transmission signal
carries information. Therefore, the transmission and

Fig. 2. (Color online) (a) 3D map showing the change in gap
width with optical source intensity at different wavelengths.
The minimum power required for changing gap width is
λ � 1.78 μm. (b) The minimum power from (a) is redrawn with
its stable and unstable branches. (c) Transmission and (d) re-
flection of signal at λ � 2.04 μm is controlled by the gate at λ �
1.78 μm with 4 dB (transmission) and 5 dB (reflectivity) depth
of modulations.
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reflection of input signal operating at 2.04 μm can be ef-
ficiently controlled by a gate beam operating at 1.78 μm.
Figures 2(c) and 2(d) show the switching of the transmis-
sion and reflection of the signal controlling the gate in-
tensity for forward and backward switching. The depth
of modulation was found to be 4 dB in transmission,
and 5 dB in reflection mode. The energy per switch is
calculated by multiplication of optical source intensity
at abrupt change in forward path, bandwidth, and device
area. The energy per switch is found to be 35 pJ due to
the small area and high speed of the switch. The wide
hysteresis loop ensures robust operation of the switching
logic against noise [17]. The thermal analysis of the struc-
ture due to optical loss in the antenna is performed by
considering the conductive and radiative heat transfer
mechanisms and utilizing a thermal equivalent circuit.
We took into account the emissivity of the antenna in ra-
diative process, which can modify the blackbody radia-
tion spectrum. Our simulation shows that the resulting
temperature increase at the gap between two beams is
around 140 K above ambient, which should not affect
the overall device performance significantly.
In conclusion, we have demonstrated a new optome-

chanical nanoantenna structure that can operate as a
switch by changing the power transmission and reflec-
tion due to a nanometer-scale mechanical reconfigura-
tion caused by generated optical force. In general, we
conclude that an efficient optomechanical antenna de-
sign should satisfy three conditions: efficient far-field
to near-field coupling, strong confinement of light into
a subwavelength region to produce considerable optical
force, and high sensitivity of the optical response to me-
chanical deformation. FDTD simulation of electromag-
netic fields and Euler–Bernoulli beam deflection
theory were applied to calculate switching characteris-
tics of the proposed device. Nanocircuit theory was ap-
plied to analyze the near-field properties due to
reconfiguration. The presented nanoswitch has high
speed (∼4.4 GHz), ultracompactness (∼λ3 ∕ 500), and ef-
ficient switching energy (∼35 pJ) which results in super-
ior performance when compared with previous
optomechanical switches. Such optomechanical devices
could be utilized in many novel applications, such as

all-optical switches, wavelength mixing, wavelength
converters, and other building blocks of photonic inte-
grated circuits.
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